Ex: 4.6 Equation 4.5

$$V_2 - V_1 = 2.3 \ V_T log \left(\frac{I_2}{I_1}\right)$$

At room temperature $V_T = 25 \text{ mV}$

$$V_2 - V_1 = 2.3 \times 25 \times 10^{-3} \times \log(\frac{10}{0.1})$$

= 115 mV

4.23

The voltage across three diodes in series is $2.4\,\mathrm{V}$; thus the voltage across each diode must be $0.8\,\mathrm{V}$.

Using $I_D = I_S e^{V_D/V_T}$, the required current is found to be 7.9 mA.

If 1 mA is drawn away from the circuit, I_D will be 6.9 mA, which would give V_D = 0.794 V, giving an output voltage of 2.39 V. Thus the change in output voltage is -10.15 mV.